We are given:
Pressure at point 1 \(P_1 = 60.80 \, {kPa} = 60.80 \times 10^3 \, {Pa}\),
Pressure at point 2 \(P_2 = 20.31 \, {kPa} = 20.31 \times 10^3 \, {Pa}\),
Distance between the points \(L = 0.22 \, {m}\),
Diffusion coefficient \(D = 0.612 \times 10^{-4} \, {m}^2.{s}^{-1}\),
Temperature \(T = 298 \, {K}\),
Universal gas constant \(R = 8314 \, {m}^3 \cdot {Pa} \cdot {kg mol}^{-1} \cdot {K}^{-1}\).
The steady-state flux \(J\) of N\(_2\) can be calculated using Fick’s law of diffusion:
\[
J = -D \times \frac{dC}{dx},
\]
Where:
\(dC/dx\) is the concentration gradient, and
\(D\) is the diffusion coefficient.
Step 1: Calculate the molar concentration of N2 at points 1 and 2.
We use the ideal gas law:
\[
C = \frac{P}{RT},
\]
So, for point 1:
\[
C_1 = \frac{P_1}{RT} = \frac{60.80 \times 10^3}{8314 \times 298} = \frac{60.80 \times 10^3}{2.478 \times 10^6} = 0.0245 \, {mol/m}^3,
\]
And for point 2:
\[
C_2 = \frac{P_2}{RT} = \frac{20.31 \times 10^3}{8314 \times 298} = \frac{20.31 \times 10^3}{2.478 \times 10^6} = 0.0082 \, {mol/m}^3.
\]
Step 2: Calculate the concentration gradient \(dC/dx\).
The concentration gradient is:
\[
\frac{dC}{dx} = \frac{C_1 - C_2}{L} = \frac{0.0245 - 0.0082}{0.22} = \frac{0.0163}{0.22} = 0.0741 \, {mol/m}^4.
\]
Step 3: Calculate the steady-state flux \(J\).
Now, apply Fick’s law:
\[
J = -D \times \frac{dC}{dx} = - (0.612 \times 10^{-4}) \times 0.0741 = -4.52 \times 10^{-5} \, {mol/m}^2 \cdot {s}.
\]
Step 4: Convert the flux to kg mol/s·m².
We multiply by \(10^6\) to convert the flux to the required units:
\[
J = 4.52 \times 10^{-5} \times 10^6 = 4.50 \, {kg mol/s} \cdot {m}^2.
\]
Thus, the value of \(n\) is 4.50.