Step 1: Force balance for terminal velocity.
At terminal velocity, the gravitational force is balanced by the drag force:
\[
\frac{\pi}{6} d^3 \rho_p g = \frac{1}{2} C_D A \rho_g v_t^2,
\]
where:
- \( d = 1 \, \text{mm} = 0.001 \, \text{m} \) (particle diameter),
- \( \rho_p = 7001 \, \text{kg/m}^3 \) (particle density),
- \( \rho_g = 1 \, \text{kg/m}^3 \) (gas density),
- \( g = 9.8 \, \text{m/s}^2 \),
- \( C_D = 0.44 \) (drag coefficient),
- \( A = \frac{\pi}{4} d^2 \) (projected area).
Step 2: Solve for terminal velocity \( v_t \).
Substitute \( A = \frac{\pi}{4} d^2 \):
\[
\frac{\pi}{6} d^3 \rho_p g = \frac{1}{2} C_D \frac{\pi}{4} d^2 \rho_g v_t^2.
\]
Simplify:
\[
\frac{d \rho_p g}{6} = \frac{C_D \rho_g v_t^2}{8}.
\]
Rearrange for \( v_t^2 \):
\[
v_t^2 = \frac{4 d \rho_p g}{3 C_D \rho_g}.
\]
Step 3: Substitute values.
\[
v_t^2 = \frac{4 \cdot 0.001 \cdot 7001 \cdot 9.8}{3 \cdot 0.44 \cdot 1}.
\]
\[
v_t^2 = \frac{274.4392}{1.32} \approx 207.91.
\]
Step 4: Calculate \( v_t \).
\[
v_t = \sqrt{207.91} \approx 14.50 \, \text{m/s}.
\]
Step 5: Conclusion.
The terminal settling velocity is \( 14.50 \, \text{m/s} \).