Step 1: Use Ohm's law to find the current.
Ohm's law states that the current \( I \) is related to the potential difference \( V \), the charge density \( n \), the charge of the carrier \( e \), the cross-sectional area \( A \), the length \( L \), and the mobility \( \mu \) by the relation:
\[
I = n A e \mu \frac{V}{L}.
\]
Step 2: Substitute the known values.
Given:
- \( I = 1.2 \, \text{A} \),
- \( A = 0.2 \, \text{mm}^2 = 0.2 \times 10^{-6} \, \text{m}^2 \),
- \( V = 2 \, \text{V} \),
- \( L = 2 \, \text{m} \),
- \( e = 1.6 \times 10^{-19} \),
- \( n = 7.5 \times 10^{28} \, \text{m}^{-3} \).
Substitute these values into the equation:
\[
1.2 = (7.5 \times 10^{28}) \times (0.2 \times 10^{-6}) \times (1.6 \times 10^{-19}) \times \mu \times \frac{2}{2}.
\]
Simplifying this:
\[
1.2 = (7.5 \times 10^{28} \times 0.2 \times 10^{-6} \times 1.6 \times 10^{-19}) \times \mu.
\]
\[
1.2 = (2.4 \times 10^{4}) \times \mu.
\]
Step 3: Solve for \( \mu \).
\[
\mu = \frac{1.2}{2.4 \times 10^{4}} = 5 \times 10^{-4} \, \text{SI units}.
\]
Thus, \( x = 5 \).
Final Answer:
\[
\boxed{5}.
\]