Only the component of \( \vec{B} \) along the area vector \( \hat{k} \) contributes to flux.
From direction:
\[
\vec{B} = 1.73 (\hat{i} + \hat{j} + \hat{k}) \Rightarrow B_k = \frac{1.73}{\sqrt{3}}
\]
Area:
\[
A = 10\, \text{cm}^2 = 10 \times 10^{-4} \, \text{m}^2 = 10^{-3} \, \text{m}^2
\]
EMF:
\[
\mathcal{E} = \left| \frac{d\Phi}{dt} \right| = \left| \frac{A \cdot B_k}{t} \right|
= \frac{10^{-3} \cdot \frac{1.73}{\sqrt{3}}}{10}
\approx \frac{1.73 \times 10^{-3}}{17.32} \approx 0.1 \times 10^{-3} = 0.10 \, \text{mV}
\]