In an fcc lattice, the atoms are located at the corners and the centers of the faces.
The atoms touch along the face diagonal.
The face diagonal is equal to \(4r\), where \(r\) is the radius of the atom.
The face diagonal is also equal to \(a\sqrt{2}\), where \(a\) is the edge length.
Therefore,
\[
4r = a\sqrt{2}
\]
\[
r = \frac{a\sqrt{2}}{4} = \frac{a}{2\sqrt{2}}
\]
\( a = 200 \) pm \( = 200 \times 10^{-12} \) m
3. Calculate the radius (r):\[ r = \frac{200 \times 10^{-12} \, \text{m}}{2\sqrt{2}} \] \[ r = \frac{100 \times 10^{-12} \, \text{m}}{\sqrt{2}} \] \[ r = \frac{100}{\sqrt{2}} \times 10^{-12} \, \text{m} \] \[ r = \frac{100 \times \sqrt{2}}{2} \times 10^{-12} \, \text{m} \] \[ r = 50\sqrt{2} \times 10^{-12} \, \text{m} \] \[ r = 50 \times 1.414 \times 10^{-12} \, \text{m} \] \[ r = 70.7 \times 10^{-12} \, \text{m} \] \[ r = 7.07 \times 10^{-11} \, \text{m} \]
4. Check the given options:Let's cube the radius: \[ (7.07 \times 10^{-11})^3 = 353.4 \times 10^{-33} \] \[ \sqrt[3]{353.4 \times 10^{-33}} = \sqrt[3]{0.3534 \times 10^{-30}} = \sqrt[3]{0.353} \times 10^{-10} \]
Final Answer:
\( \sqrt[3]{0.353} \times 10^{-10} \) m.