Given:
- Mass of aluminium, \( m_{Al} = 2.4 \, \text{kg} \)
- Mass of brass, \( m_{Brass} = 1.6 \, \text{kg} \)
- Mass of copper, \( m_{Cu} = 0.8 \, \text{kg} \)
- Initial temperature, \( T_i = 20^\circ C \)
- Heat supplied, \( Q = 44.4 \, \text{cal} \)
- Specific heat capacities:
- Aluminium, \( c_{Al} = 0.216 \, \text{cal} \cdot \text{kg}^{-1} \cdot {}^\circ C^{-1} \)
- Brass, \( c_{Brass} = 0.0917 \, \text{cal} \cdot \text{kg}^{-1} \cdot {}^\circ C^{-1} \)
- Copper, \( c_{Cu} = 0.0931 \, \text{cal} \cdot \text{kg}^{-1} \cdot {}^\circ C^{-1} \)
Find: Final temperature \( T_f \).
Step 1: Total heat supplied is absorbed by all three metals causing temperature rise:
\[
Q = m_{Al} c_{Al} (T_f - T_i) + m_{Brass} c_{Brass} (T_f - T_i) + m_{Cu} c_{Cu} (T_f - T_i)
\]
Step 2: Factor out \( (T_f - T_i) \):
\[
Q = (T_f - T_i) \left( m_{Al} c_{Al} + m_{Brass} c_{Brass} + m_{Cu} c_{Cu} \right)
\]
Step 3: Calculate the sum inside the parenthesis:
\[
m_{Al} c_{Al} = 2.4 \times 0.216 = 0.5184
\]
\[
m_{Brass} c_{Brass} = 1.6 \times 0.0917 = 0.14672
\]
\[
m_{Cu} c_{Cu} = 0.8 \times 0.0931 = 0.07448
\]
Sum:
\[
0.5184 + 0.14672 + 0.07448 = 0.7396
\]
Step 4: Substitute values in heat equation:
\[
44.4 = (T_f - 20) \times 0.7396
\]
\[
T_f - 20 = \frac{44.4}{0.7396} \approx 60
\]
\[
T_f = 20 + 60 = 80^\circ C
\]
Therefore, the final temperature of the metal block is:
\[
\boxed{80^\circ C}
\]