Step 1: Surface Energy Formula
Surface energy is given by:
\[
\Delta U = S \Delta A
\]
where:
- \( S = 35 \times 10^{-3} \) N/m (surface tension),
- \( \Delta A \) = Change in surface area.
Step 2: Surface Area Calculations
Initial surface area:
\[
A_{\text{initial}} = 4\pi R^2
\]
where \( R = 1 \) cm,
\[
A_{\text{initial}} = 4\pi (1)^2 = 4\pi \text{ cm}^2
\]
Final surface area for \( n = 10^6 \) droplets of radius \( r \):
\[
A_{\text{final}} = n \times 4\pi r^2
\]
Since volume is conserved:
\[
\frac{4}{3} \pi R^3 = n \times \frac{4}{3} \pi r^3
\]
Solving for \( r \):
\[
r = R n^{-1/3} = 1 \times (10^6)^{-1/3} = 10^{-2} \text{ cm}
\]
Final surface area:
\[
A_{\text{final}} = 10^6 \times 4\pi (10^{-2})^2 = 4\pi \times 10^4 \text{ cm}^2
\]
Change in surface area:
\[
\Delta A = A_{\text{final}} - A_{\text{initial}} = (4\pi \times 10^4 - 4\pi) \text{ cm}^2
\]
\[
= 4\pi(10^4 - 1) \text{ cm}^2
\]
Step 3: Compute \( \Delta U \)
\[
\Delta U = S \Delta A = (35 \times 10^{-3}) \times (4\pi \times 9999 \times 10^{-4}) \text{ J}
\]
\[
= 4356 \mu \text{J}
\]
Conclusion
Thus, the correct answer is:
\[
4356 \mu \text{J}
\]