In Simple Harmonic Motion (SHM), the acceleration \(a\) is related to the displacement \(x\) by \(a = -\omega^2 x\), where \(\omega\) is the angular frequency.
The acceleration is maximum when the displacement is maximum (i.
e.
, equal to the amplitude \(A\)).
The magnitude of the maximum acceleration (\(a_{max}\)) is:
$$ a_{max} = \omega^2 A $$
We are given:
Amplitude \(A = 10\) cm = 0.
10 m.
Maximum acceleration \(a_{max} = 5\) m/s\(^2\).
We need to find \(\omega\).
Rearranging the formula:
$$ \omega^2 = \frac{a_{max}}{A} $$
$$ \omega^2 = \frac{5 \, \text{m/s}^2}{0.
10 \, \text{m}} = \frac{5}{0.
1} = 50 \, (\text{rad/s})^2 $$
$$ \omega = \sqrt{50} \, \text{rad/s} $$
Calculating the square root: \( \sqrt{49} = 7 \).
So, \(\sqrt{50}\) is slightly more than 7.
$$ \omega \approx 7.
07 \, \text{rad/s} $$
The closest option is 7 rad/s.