A marker buoy of mass 1500 kg floating in sea water of density 1025 kg/m³, consists of a cylinder and cone as shown in the following figure. The buoy is suitably ballasted to make it stable in the floating condition. The buoy is subjected to an external periodic excitation force in Newton, \(F_e(t) = 2000 \sin (1.25 t)\). Ignore damping effects and assume g = 9.81 m/s², added mass = 25% of the mass of the buoy. The maximum heave response amplitude of the buoy is .................... m (round off to one decimal place) 
An electrical wire of 2 mm diameter and 5 m length is insulated with a plastic layer of thickness 2 mm and thermal conductivity \( k = 0.1 \) W/(m·K). It is exposed to ambient air at 30°C. For a current of 5 A, the potential drop across the wire is 2 V. The air-side heat transfer coefficient is 20 W/(m²·K). Neglecting the thermal resistance of the wire, the steady-state temperature at the wire-insulation interface __________°C (rounded off to 1 decimal place).

GIVEN:
Kinematic viscosity: \( \nu = 1.0 \times 10^{-6} \, {m}^2/{s} \)
Prandtl number: \( {Pr} = 7.01 \)
Velocity boundary layer thickness: \[ \delta_H = \frac{4.91 x}{\sqrt{x \nu}} \]
The first-order irreversible liquid phase reaction \(A \to B\) occurs inside a constant volume \(V\) isothermal CSTR with the initial steady-state conditions shown in the figure. The gain, in kmol/m³·h, of the transfer function relating the reactor effluent \(A\) concentration \(c_A\) to the inlet flow rate \(F\) is:

Bird : Nest :: Bee : __________
Select the correct option to complete the analogy.
A closed system is undergoing a reversible process 1–P–2 from state 1 to 2, as shown in the figure, where X and Y are thermodynamic properties. An irreversible process 2–Q–1 brings the system back from 2 to 1. The net change in entropy of the system and surroundings during the above-mentioned cycle are _______ respectively.
