The selling price of articles sold at a gain:
\[ \text{Selling Price} = \left(\frac{3}{5}x\right) \times (1 + 0.20) \cdot c = \left(\frac{3}{5}x\right) \times 1.20c \]
The selling price of articles sold at cost price:
\[ \text{Selling Price} = \left(\frac{2}{5}x\right) \cdot c \]
Total selling price:
\[ SP_{\text{total}} = \frac{3}{5}x \cdot 1.20c + \frac{2}{5}x \cdot c \]
\[ SP_{\text{total}} = \left(\frac{3}{5}x \cdot 1.20 + \frac{2}{5}x\right)c \]
\[ SP_{\text{total}} = \left(\frac{3\times1.20}{5} + \frac{2}{5}\right)xc\]
\[ SP_{\text{total}} = \left(\frac{3.60}{5} + \frac{2}{5}\right)xc\]
\[ SP_{\text{total}} = \left(\frac{5.60}{5}\right)xc\]
\[ SP_{\text{total}} = 1.12xc \]
Thus, the total cost price for all articles:
\[ CP_{\text{total}} = x \cdot c \]
The percentage gain is calculated as follows:
\[ \text{Gain} = SP_{\text{total}} - CP_{\text{total}} = 1.12xc - xc = 0.12xc \]
\[ \text{Percentage Gain} = \left(\frac{\text{Gain}}{CP_{\text{total}}}\right) \times 100\% \]
\[ \text{Percentage Gain} = \left(\frac{0.12xc}{xc}\right) \times 100\% \]
\[ \text{Percentage Gain} = 0.12 \times 100\% = 12\% \]
The man earned a percentage gain of 12% in the transaction.
Find the missing code:
L1#1O2~2, J2#2Q3~3, _______, F4#4U5~5, D5#5W6~6