From the first case (income Rs. 4{,}000):
First Rs. 2{,}000 earns at $x%$: $\frac{x}{100} \times 2000$
Next Rs. 2{,}000 earns at $y%$: $\frac{y}{100} \times 2000$
Total = 700 $\Rightarrow 20x + 20y = 700 \quad (1)$
From the second case (income Rs. 5{,}000):
First Rs. 2{,}000 earns at $x%$: $\frac{x}{100} \times 2000$
Next Rs. 3{,}000 earns at $y%$: $\frac{y}{100} \times 3000$
Total = 900 $\Rightarrow 20x + 30y = 900 \quad (2)$
Subtract (1) from (2): $(20x + 30y) - (20x + 20y) = 900 - 700$
$10y = 200 \Rightarrow y = 20$
From (1): $20x + 20(20) = 700 \Rightarrow 20x + 400 = 700 \Rightarrow 20x = 300 \Rightarrow x = 15$ → correction here means answer is 15%, so option (b).