Step 1: Establish the compound interest formula.
\[
\text{Amount} = \text{Principal} \left(1 + \frac{\text{Rate}}{100}\right)^{\text{Time}}
\]
Given, \( P = 1000 \), \( R = 10% \), \( A = 1331 \).
Step 2: Solve for time.
\[
1331 = 1000 \left(1 + \frac{10}{100}\right)^t
\]
\[
1.331 = (1.1)^t
\]
\[
t = \log_{1.1}(1.331)
\]
Approximating or using logarithmic calculations:
\[
t \approx 5 \text{ years}
\]