Let the length of the escalator be $L$, the man's walking speed be $m$, and the escalator's speed be $e$.
Upwards on moving escalator:
\[
\frac{L}{m + e} = 30 \quad \Rightarrow \quad L = 30(m + e)
\]
Downwards on moving 'up' escalator:
\[
\frac{L}{m - e} = 90 \quad \Rightarrow \quad L = 90(m - e)
\]
Equating both expressions for $L$:
\[
30(m + e) = 90(m - e)
\]
\[
m + e = 3m - 3e
\]
\[
2m = 4e \quad \Rightarrow \quad m = 2e
\]
Substitute $m = 2e$ into $L = 30(m + e)$:
\[
L = 30(2e + e) = 90e
\]
When escalator is stationary:
\[
\frac{L}{m} = \frac{90e}{2e} = 45 \ \text{s}
\]
Thus, time taken is 45 s.