Total possible cases 12C3
\(=\frac{12\times11\times10\times9!}{3!\times9!}=220\) ways
Total ways of selecting three non-defective bulbs
\(=\) 8C3\(=\frac{8\times7\times6\times5!}{3!\times5!}=56\)
Required probability \(=\frac{56}{220}=\frac{14}{55}\)
The correct option is (A)
If the probability distribution is given by:
| X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| P(x) | 0 | k | 2k | 2k | 3k | k² | 2k² | 7k² + k |
Then find: \( P(3 < x \leq 6) \)
If \(S=\{1,2,....,50\}\), two numbers \(\alpha\) and \(\beta\) are selected at random find the probability that product is divisible by 3 :
