Step 1: Magnetic Field Inside and Outside the Wire
The magnetic field inside a current-carrying wire (for \( r<a \)) follows:
\[
B_{\text{inside}} = \frac{\mu_0 I r}{2\pi a^2}
\]
For outside the wire (for \( r>a \)):
\[
B_{\text{outside}} = \frac{\mu_0 I}{2\pi r}
\]
Step 2: Calculating the Ratio
For \( r = 0.5a \):
\[
B_{0.5a} = \frac{\mu_0 I (0.5a)}{2\pi a^2} = \frac{\mu_0 I}{4\pi a}
\]
For \( r = 1.5a \):
\[
B_{1.5a} = \frac{\mu_0 I}{2\pi (1.5a)} = \frac{\mu_0 I}{3\pi a}
\]
Ratio:
\[
\frac{B_{0.5a}}{B_{1.5a}} = \frac{\frac{\mu_0 I}{4\pi a}}{\frac{\mu_0 I}{3\pi a}}
\]
\[
= \frac{1}{4} \div \frac{1}{3} = \frac{3}{4}
\]
Thus, the correct ratio is:
\[
2:3
\]