Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below:
$\text{The fractional compression } \left( \frac{\Delta V}{V} \right) \text{ of water at the depth of } 2.5 \, \text{km below the sea level is } \_\_\_\_\_\_\_\_\_\_ \%. \text{ Given, the Bulk modulus of water } = 2 \times 10^9 \, \text{N m}^{-2}, \text{ density of water } = 10^3 \, \text{kg m}^{-3}, \text{ acceleration due to gravity } g = 10 \, \text{m s}^{-2}.$
If the ratio of the terms equidistant from the middle term in the expansion of \((1 + x)^{12}\) is \(\frac{1}{256}\), then the sum of all the terms of the expansion \((1 + x)^{12}\) is:
A 3 kg block is connected as shown in the figure. Spring constants of two springs \( K_1 \) and \( K_2 \) are 50 Nm\(^{-1}\) and 150 Nm\(^{-1}\) respectively. The block is released from rest with the springs unstretched. The acceleration of the block in its lowest position is ( \( g = 10 \) ms\(^{-2}\) )