Step 1: The magnetic field outside a uniformly magnetized cylinder cannot generally be expressed as the gradient of a scalar function. This is because the magnetization generates a non-conservative magnetic field in the region outside the cylinder, which contradicts the option (A).
Step 2: The bound volume current density \( \mathbf{J}_b \) is related to the magnetization \( \mathbf{M} \) by: \[ \mathbf{J}_b = \nabla \times \mathbf{M}. \] Since the magnetization is uniform, its curl is zero, and thus, the bound volume current density is zero, making option (B) correct.
Step 3: The surface current density \( \mathbf{K}_b \) on the curved surface of the cylinder is given by: \[ \mathbf{K}_b = \hat{n} \times \mathbf{M}. \] Since the magnetization is uniform and along the axis of the cylinder, there is a non-zero surface current density on the curved surface, which makes option (C) correct.
Step 4: On the flat surfaces (top and bottom), the magnetization does not produce a current, as the magnetization is parallel to the cylinder's axis. Therefore, the surface current densities on the flat surfaces are zero, making option (D) incorrect.
Three long straight wires carrying current are arranged mutually parallel as shown in the figure. The force experienced by \(15\) cm length of wire \(Q\) is ________. (\( \mu_0 = 4\pi \times 10^{-7}\,\text{T m A}^{-1} \)) 
