Step 1: The magnetic field outside a uniformly magnetized cylinder cannot generally be expressed as the gradient of a scalar function. This is because the magnetization generates a non-conservative magnetic field in the region outside the cylinder, which contradicts the option (A).
Step 2: The bound volume current density \( \mathbf{J}_b \) is related to the magnetization \( \mathbf{M} \) by: \[ \mathbf{J}_b = \nabla \times \mathbf{M}. \] Since the magnetization is uniform, its curl is zero, and thus, the bound volume current density is zero, making option (B) correct.
Step 3: The surface current density \( \mathbf{K}_b \) on the curved surface of the cylinder is given by: \[ \mathbf{K}_b = \hat{n} \times \mathbf{M}. \] Since the magnetization is uniform and along the axis of the cylinder, there is a non-zero surface current density on the curved surface, which makes option (C) correct.
Step 4: On the flat surfaces (top and bottom), the magnetization does not produce a current, as the magnetization is parallel to the cylinder's axis. Therefore, the surface current densities on the flat surfaces are zero, making option (D) incorrect.
A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is: