Step 1: Identify the intended symmetry axes.
For a $4 \times 5$ grid, the two natural symmetry lines are:
(i) a vertical line between columns 2 and 3, and
(ii) a horizontal line through the middle row (row 3).
Step 2: Check which existing blacks already satisfy symmetry.
- Horizontal symmetry pairs: $(r1,c2)\leftrightarrow(r5,c2)$, $(r1,c3)\leftrightarrow(r5,c3)$, $(r2,c1)\leftrightarrow(r4,c1)$, $(r2,c4)\leftrightarrow(r4,c4)$ are already black–black and hence fine.
- The mismatch for horizontal symmetry occurs at $(r4,c3)$ which is black; its mirror across row 3 is $(r2,c3)=d$ (currently white). Thus d must be coloured black.
Step 3: Enforce vertical symmetry (mirror across columns 2 and 3).
- Cell $(r4,c3)$ is black; its vertical mirror is $(r4,c2)=i$ (white). Hence i must be coloured black.
- With d black (from Step 2), its vertical mirror is $(r2,c2)=c$; therefore c must also be black for vertical symmetry.
Step 4: Minimality check.
Colouring c, d, and i makes all horizontal and vertical mirror pairs match. No other cells are required; choosing fewer (e.g., only c,i) fails the horizontal pair $(r2,c3)\leftrightarrow(r4,c3)$, and any extra cells (e.g., f,g) are unnecessary.
\[
\boxed{\text{Colour exactly } c, d, \text{ and } i \text{ to achieve two lines of symmetry (minimum = 3).}}
\]

If a mirror is placed vertically next to the picture given above at the dotted line, then the image of the picture on the left looks like:
Find the correct mirror image for the following problem figure from the alternatives:

Consider a reinforced concrete beam section of 350 mm width and 600 mm depth. The beam is reinforced with the tension steel of 800 mm\(^2\) area at an effective cover of 40 mm. Consider M20 concrete and Fe415 steel. Let the stress block considered for concrete in IS 456:2000 be replaced by an equivalent rectangular stress block, with no change in (a) the area of the stress block, (b) the design strength of concrete (at the strain of 0.0035), and (c) the location of neutral axis at flexural collapse.
The ultimate moment of resistance of the beam (in kN.m) is ___________ (round off to the nearest integer).
Two soils of permeabilities \( k_1 \) and \( k_2 \) are placed in a horizontal flow apparatus, as shown in the figure. For Soil 1, \( L_1 = 50 \, {cm} \), and \( k_1 = 0.055 \, {cm/s} \); for Soil 2, \( L_2 = 30 \, {cm} \), and \( k_2 = 0.035 \, {cm/s} \). The cross-sectional area of the horizontal pipe is 100 cm², and the head difference (\( \Delta h \)) is 150 cm. The discharge (in cm³/s) through the soils is ........ (rounded off to 2 decimal places).

The most suitable test for measuring the permeability of clayey soils in the laboratory is ___________.
Consider the beam ACDEB given in the figure. Which of the following statements is/are correct:
