We are asked to compute the ratio of revenue growth between: \[ \frac{\text{Revenue}_{1992} - \text{Revenue}_{1991}}{\text{Revenue}_{1991} - \text{Revenue}_{1990}} \]
Statement I: Gives the angles that AB and CB make with the x-axis, but angles alone do not give revenue unless we know the scaling. So it is insufficient alone.
Statement II: The scale alone doesn’t help — we don’t know how much y-values differ between A, B, and C unless the angles or coordinates are known.
Together: With the angle (from slope) and scale (conversion from cm to revenue), we can compute the vertical change: \[ \tan \theta = \frac{\Delta y}{\Delta x} \Rightarrow \Delta y = \Delta x \cdot \tan \theta \Rightarrow \text{Revenue Change} = \Delta x \cdot \tan \theta \cdot 1000 \] Hence, combining both allows calculation of revenue changes and their ratio.
A bar graph shows the number of students in 5 departments of a college. If the average number of students is 240 and the number of students in the Science department is 320, how many students are there in total in the other four departments?
A pie chart shows the distribution of students across 5 faculties in a university. If 20% are in Arts, 25% in Science, 15% in Law, 30% in Engineering, and the rest in Commerce, what is the angle (in degrees) for Commerce?
In a sequence of numbers, each term is generated by multiplying the previous term by 2 and then subtracting 1. If the first term is 3, what is the fourth term in the sequence?