Step 1: Find the equation and slope of line \(AB\).
Line \(AB\) cuts the axes at:
\[
A(7,0), \quad B(0,-5)
\]
Slope of \(AB\):
\[
m_{AB}=\frac{-5-0}{0-7}=\frac{5}{7}
\]
Step 2: Write the equation of variable line \(PQ\).
Since \(PQ \perp AB\), its slope is:
\[
m_{PQ}=-\frac{7}{5}
\]
Let \(P(a,0)\) and \(Q(0,b)\).
Slope of \(PQ\):
\[
\frac{b-0}{0-a}=-\frac{b}{a}
\]
Equating slopes:
\[
-\frac{b}{a}=-\frac{7}{5}
\Rightarrow \frac{b}{a}=\frac{7}{5}
\Rightarrow b=\frac{7a}{5}
\]
Step 3: Find equations of lines \(AQ\) and \(BP\).
Equation of \(AQ\) through \(A(7,0)\) and \(Q(0,b)\):
\[
\frac{y-0}{x-7}=\frac{b-0}{0-7}
\Rightarrow y=-\frac{b}{7}(x-7)
\]
Equation of \(BP\) through \(B(0,-5)\) and \(P(a,0)\):
\[
\frac{y+5}{x}=\frac{0+5}{a}
\Rightarrow ay=5x-5a
\]
Step 4: Find coordinates of intersection point \(R(x,y)\).
Substitute \(b=\frac{7a}{5}\) into equation of \(AQ\):
\[
y=-\frac{a}{5}(x-7)
\]
From \(BP\):
\[
y=\frac{5x-5a}{a}
\]
Equating both expressions for \(y\) and simplifying, we eliminate \(a\) to obtain:
\[
x^2+y^2-7x+5y=0
\]
Hence, the locus of point \(R\) is
\[
\boxed{x^2+y^2-7x+5y=0}
\]