Step 1: Use Einstein photoelectric equation.
\[
K_{\max} = h\nu - \phi
\]
Step 2: Substitute values.
Given:
\[
h = 6.63 \times 10^{-34} \, \text{J s}, \quad \nu = 6 \times 10^{14}\, \text{Hz}
\]
Energy of photon:
\[
h\nu = 6.63 \times 10^{-34} \times 6 \times 10^{14}
= 3.978 \times 10^{-19}\, \text{J}
\]
Step 3: Convert joule to eV.
\[
1\,\text{eV} = 1.6 \times 10^{-19}\,\text{J}
\]
\[
h\nu = \frac{3.978 \times 10^{-19}}{1.6 \times 10^{-19}}
= 2.49 \,\text{eV}
\]
Step 4: Subtract work function.
\[
K_{\max} = 2.49 - 2 = 0.49 \,\text{eV}
\]
Final Answer:
\[
\boxed{0.49 \,\text{eV}}
\]