Question:

A light ray is incident on the surface of a sphere of refractive index n at an angle of incidence θ0\theta_0. The ray partially refracts into the sphere with angle of refraction ϕ\phi and then partly reflects from the back surface. The reflected ray then emerges out of the sphere after a partial refraction. The total angle of deviation of the emergent ray with respect to the incident ray is aa. Match the quantities mentioned in List-I with their values in List-II and choose the correct option.
List-IList-II
PIf n=2n = 2 and α=180°\alpha = 180°, then all the possible values of θ0\theta_0 will beI 30°30\degree or 0°0\degree 
QIf n=3n = √3 and α=180°\alpha= 180°, then all the possible values of θ0\theta_0 will beII60°60\degree or 0°0\degree
RIf n=3n = √3 and α=180°\alpha= 180°, then all the possible values of ϕ0\phi_0 will beIII45°45\degree or 0° 0\degree
SIf n=2n = \sqrt2 and θ0=45°\theta_0 = 45°, then all the possible values of  α\alpha will beIV150°150\degree
   0°0\degree

Updated On: Mar 7, 2025
  • P → 5; Q → 2; R→ 1; S→ 4
  • P → 5; Q → 1; R→ 2; S→ 4
  • P → 3; Q → 2; R→ 1; S→ 4
  • P → 3; Q → 1; R→ 2; S→ 5
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Calculate for P 

Given n=2 n = 2 and α=180 \alpha = 180^\circ ,

δ=2(θ0ϕ0)+π2ϕ0=2. \delta = 2(\theta_0 - \phi_0) + \pi - 2\phi_0 = 2.

From the above equation, ϕ0=0 \phi_0 = 0^\circ .

θ0=2ϕ0=0. \theta_0 = 2\phi_0 = 0^\circ.

Thus, θ0=0 \theta_0 = 0^\circ for P.

Step 2: Calculate for Q

Given n=3 n = \sqrt{3} and α=180 \alpha = 180^\circ ,

1sinθ0=3sinϕ0. 1 \cdot \sin \theta_0 = \sqrt{3} \cdot \sin \phi_0.

For ϕ0=0 \phi_0 = 0^\circ :

θ0=0orθ0=60. \theta_0 = 0^\circ \quad \text{or} \quad \theta_0 = 60^\circ.

Step 3: Calculate for R

Given n=3 n = \sqrt{3} and α=180 \alpha = 180^\circ , using Snell’s law:

nsinϕ0=sinθ0. n \cdot \sin \phi_0 = \sin \theta_0.

Solving gives ϕ0=0 \phi_0 = 0^\circ or ϕ0=30 \phi_0 = 30^\circ .

Step 4: Calculate for S

Given n=2 n = \sqrt{2} and θ0=45 \theta_0 = 45^\circ :

sinϕ0=sin452=12. \sin \phi_0 = \frac{\sin 45^\circ}{\sqrt{2}} = \frac{1}{2}.

The total angle α \alpha is:

α=150. \alpha = 150^\circ.

Conclusion

Based on the calculations:

  • P → 5
  • Q → 2
  • R → 1
  • S → 4

Final Answer:

The correct option is (A).

Was this answer helpful?
0
0

Top Questions on Reflection Of Light By Spherical Mirrors

View More Questions

Questions Asked in JEE Advanced exam

View More Questions