| List-I | List-II | ||
| P | If \(n = 2\) and \(\alpha = 180°\), then all the possible values of \(\theta_0\) will be | I | \(30\degree\) or \(0\degree\) |
| Q | If \(n = √3\) and \(\alpha= 180°\), then all the possible values of \(\theta_0\) will be | II | \(60\degree\) or \(0\degree\) |
| R | If \(n = √3\) and \(\alpha= 180°\), then all the possible values of \(\phi_0\) will be | III | \(45\degree\) or \( 0\degree\) |
| S | If \(n = \sqrt2\) and \(\theta_0 = 45°\), then all the possible values of \(\alpha\) will be | IV | \(150\degree\) |
| \[0\degree\] | |||
Given \( n = 2 \) and \( \alpha = 180^\circ \),
\[ \delta = 2(\theta_0 - \phi_0) + \pi - 2\phi_0 = 2. \]
From the above equation, \( \phi_0 = 0^\circ \).
\[ \theta_0 = 2\phi_0 = 0^\circ. \]
Thus, \( \theta_0 = 0^\circ \) for P.
Given \( n = \sqrt{3} \) and \( \alpha = 180^\circ \),
\[ 1 \cdot \sin \theta_0 = \sqrt{3} \cdot \sin \phi_0. \]
For \( \phi_0 = 0^\circ \):
\[ \theta_0 = 0^\circ \quad \text{or} \quad \theta_0 = 60^\circ. \]
Given \( n = \sqrt{3} \) and \( \alpha = 180^\circ \), using Snell’s law:
\[ n \cdot \sin \phi_0 = \sin \theta_0. \]
Solving gives \( \phi_0 = 0^\circ \) or \( \phi_0 = 30^\circ \).
Given \( n = \sqrt{2} \) and \( \theta_0 = 45^\circ \):
\[ \sin \phi_0 = \frac{\sin 45^\circ}{\sqrt{2}} = \frac{1}{2}. \]
The total angle \( \alpha \) is:
\[ \alpha = 150^\circ. \]
Based on the calculations:
The correct option is (A).
To solve the problem, we need to analyze the refraction and reflection of light rays inside a sphere with given refractive indices and angles, then match the values from List-I with List-II.
1. Understanding the problem:
A light ray incident on the surface of a sphere partially refracts inside, reflects from the back surface, and then emerges out. Given the refractive index \(n\), angle of incidence \(\theta_0\), angle of refraction \(\phi\), and total deviation angle \(\alpha\), we find possible values of these angles under different conditions.
2. Using Snell's Law and Geometry:
Snell's Law states:
\[
n_1 \sin \theta_0 = n_2 \sin \phi
\]
For air to sphere interface, \(n_1 = 1\) and \(n_2 = n\).
Hence,
\[
\sin \theta_0 = n \sin \phi
\]
Given the total angle of deviation \(\alpha = 180^\circ\), geometrical relations help us find possible values of \(\theta_0\) and \(\phi\).
3. Matching List-I and List-II for each case:
4. Conclusion:
The correct matching is:
P → 5 (0° or 30°), Q → 2 (0° or 60°), R → 1 (0° or 45°), S → 4 (150° or 0°)
Final Answer:
Option A: P → 5; Q → 2; R → 1; S → 4
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?