Step 1: Understand the geometry of the prism The prism is equilateral, so each angle of the prism is \( A = 60^\circ \). Given that the light travels parallel to the base inside the prism, it implies the angle of refraction \( r \) at the first face is \( 30^\circ \).
Step 2: Use Snell's Law at the first surface \[ \mu = \frac{\sin i}{\sin r} \] Given: \( \mu = \sqrt{3}, r = 30^\circ \)
Step 3: Solve for angle of incidence \( i \) \[ \sqrt{3} = \frac{\sin i}{\sin 30^\circ} = \frac{\sin i}{1/2} \Rightarrow \sin i = \sqrt{3} \cdot \frac{1}{2} = \frac{\sqrt{3}}{2} \] \[ \Rightarrow i = 60^\circ \]
Match List-I with List-II for the index of refraction for yellow light of sodium (589 nm)
LIST-I (Materials) | LIST-II (Refractive Indices) | ||
---|---|---|---|
A. | Ice | I. | 1.309 |
B. | Rock salt (NaCl) | II. | 1.460 |
C. | CCl₄ | III. | 1.544 |
D. | Diamond | IV. | 2.417 |
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Compton Effect | IV. | Scattering |
B. | Colors in thin film | II. | Interference |
C. | Double Refraction | III. | Polarization |
D. | Bragg's Equation | I. | Diffraction |
Choose the correct answer from the options given below: