A leaf filter is operated at 1 atm (gauge). The volume of filtrate collected \(V\) (in \(m^3\)) is related with the volumetric flow rate of the filtrate \(q\) (in \(m^3/s\)) as: \[ \frac{1}{q} = \frac{1}{\frac{dV}{dt}} = 50V + 100 \] The volumetric flow rate of the filtrate at 1 hour is ___________ \( \times 10^{-3} \, m^3/s\) (rounded off to 2 decimal places).
Step 1: Rearranging the Equation. The given equation relates the inverse of the volumetric flow rate \(q\) with the volume \(V\): \[ q = \frac{1}{50V + 100} \] Step 2: Expressing the Rate of Change of Volume. The rate of change of volume is: \[ \frac{dV}{dt} = 50V + 100 \] Step 3: Integrating the Equation. We integrate both sides of the equation: \[ \int \frac{1}{50V + 100} \, dV = \int dt \] After integrating, we get: \[ \frac{1}{50} \ln(50V + 100) = t + C \] Step 4: Finding the Constant of Integration. Using the initial condition \(V = 0.002 \, {m}^3\) at \(t = 0\): \[ C = \frac{1}{50} \ln(100.1) \] Step 5: Finding \(V\) at \(t = 3600\) Seconds. Substitute \(t = 3600\) seconds into the equation and solve for \(V\).
Step 6: Calculate the Volumetric Flow Rate. Finally, we substitute the obtained volume \(V\) at \(t = 3600\) seconds into the equation: \[ q = \frac{1}{50V + 100} \] The final volumetric flow rate is \(q = 1.61 \times 10^{-3} \, {m}^3/{s}\).
An electrical wire of 2 mm diameter and 5 m length is insulated with a plastic layer of thickness 2 mm and thermal conductivity \( k = 0.1 \) W/(m·K). It is exposed to ambient air at 30°C. For a current of 5 A, the potential drop across the wire is 2 V. The air-side heat transfer coefficient is 20 W/(m²·K). Neglecting the thermal resistance of the wire, the steady-state temperature at the wire-insulation interface __________°C (rounded off to 1 decimal place).

GIVEN:
Kinematic viscosity: \( \nu = 1.0 \times 10^{-6} \, {m}^2/{s} \)
Prandtl number: \( {Pr} = 7.01 \)
Velocity boundary layer thickness: \[ \delta_H = \frac{4.91 x}{\sqrt{x \nu}} \]
Consider two identical tanks with a bottom hole of diameter \( d \). One tank is filled with water and the other tank is filled with engine oil. The height of the fluid column \( h \) is the same in both cases. The fluid exit velocity in the two tanks are \( V_1 \) and \( V_2 \). Neglecting all losses, which one of the following options is correct?

The figures I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence at IV?

A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?

Consider a process with transfer function: \[ G_p = \frac{2e^{-s}}{(5s + 1)^2} \] A first-order plus dead time (FOPDT) model is to be fitted to the unit step process reaction curve (PRC) by applying the maximum slope method. Let \( \tau_m \) and \( \theta_m \) denote the time constant and dead time, respectively, of the fitted FOPDT model. The value of \( \frac{\tau_m}{\theta_m} \) is __________ (rounded off to 2 decimal places).
Given: For \( G = \frac{1}{(\tau s + 1)^2} \), the unit step output response is: \[ y(t) = 1 - \left(1 + \frac{t}{\tau}\right)e^{-t/\tau} \] The first and second derivatives of \( y(t) \) are: \[ \frac{dy(t)}{dt} = \frac{t}{\tau^2} e^{-t/\tau} \] \[ \frac{d^2y(t)}{dt^2} = \frac{1}{\tau^2} \left(1 - \frac{t}{\tau}\right) e^{-t/\tau} \]