A leaf filter is operated at 1 atm (gauge). The volume of filtrate collected \(V\) (in \(m^3\)) is related with the volumetric flow rate of the filtrate \(q\) (in \(m^3/s\)) as: \[ \frac{1}{q} = \frac{1}{\frac{dV}{dt}} = 50V + 100 \] The volumetric flow rate of the filtrate at 1 hour is ___________ \( \times 10^{-3} \, m^3/s\) (rounded off to 2 decimal places).
Step 1: Rearranging the Equation. The given equation relates the inverse of the volumetric flow rate \(q\) with the volume \(V\): \[ q = \frac{1}{50V + 100} \] Step 2: Expressing the Rate of Change of Volume. The rate of change of volume is: \[ \frac{dV}{dt} = 50V + 100 \] Step 3: Integrating the Equation. We integrate both sides of the equation: \[ \int \frac{1}{50V + 100} \, dV = \int dt \] After integrating, we get: \[ \frac{1}{50} \ln(50V + 100) = t + C \] Step 4: Finding the Constant of Integration. Using the initial condition \(V = 0.002 \, {m}^3\) at \(t = 0\): \[ C = \frac{1}{50} \ln(100.1) \] Step 5: Finding \(V\) at \(t = 3600\) Seconds. Substitute \(t = 3600\) seconds into the equation and solve for \(V\).
Step 6: Calculate the Volumetric Flow Rate. Finally, we substitute the obtained volume \(V\) at \(t = 3600\) seconds into the equation: \[ q = \frac{1}{50V + 100} \] The final volumetric flow rate is \(q = 1.61 \times 10^{-3} \, {m}^3/{s}\).
An electrical wire of 2 mm diameter and 5 m length is insulated with a plastic layer of thickness 2 mm and thermal conductivity \( k = 0.1 \) W/(m·K). It is exposed to ambient air at 30°C. For a current of 5 A, the potential drop across the wire is 2 V. The air-side heat transfer coefficient is 20 W/(m²·K). Neglecting the thermal resistance of the wire, the steady-state temperature at the wire-insulation interface __________°C (rounded off to 1 decimal place).

GIVEN:
Kinematic viscosity: \( \nu = 1.0 \times 10^{-6} \, {m}^2/{s} \)
Prandtl number: \( {Pr} = 7.01 \)
Velocity boundary layer thickness: \[ \delta_H = \frac{4.91 x}{\sqrt{x \nu}} \]
The first-order irreversible liquid phase reaction \(A \to B\) occurs inside a constant volume \(V\) isothermal CSTR with the initial steady-state conditions shown in the figure. The gain, in kmol/m³·h, of the transfer function relating the reactor effluent \(A\) concentration \(c_A\) to the inlet flow rate \(F\) is:

A hot plate is placed in contact with a cold plate of a different thermal conductivity as shown in the figure. The initial temperature (at time $t = 0$) of the hot plate and cold plate are $T_h$ and $T_c$, respectively. Assume perfect contact between the plates. Which one of the following is an appropriate boundary condition at the surface $S$ for solving the unsteady state, one-dimensional heat conduction equations for the hot plate and cold plate for $t>0$?

The following data is given for a ternary \(ABC\) gas mixture at 12 MPa and 308 K:

\(y_i\): mole fraction of component \(i\) in the gas mixture
\(\hat{\phi}_i\): fugacity coefficient of component \(i\) in the gas mixture at 12 MPa and 308 K
The fugacity of the gas mixture is _________ MPa (rounded off to 3 decimal places).