Let the known positive charge at point $P$ be $+q$.
We are told that:
For the forces to cancel each other:
Let’s assume both $Q_1$ and $Q_2$ are positive: Then both repel $+q$, and the forces are in opposite directions. For net force to be zero, the magnitudes must be equal. Since $P$ is closer to $Q_2$, the force due to $Q_2$ would naturally be stronger unless its charge is smaller. So, to balance, $Q_2$ must have smaller magnitude than $Q_1$. Therefore, the charges are of the same sign, and since $P$ is closer to $Q_2$, for forces to cancel, we must have:
$|Q_1| > |Q_2|$
Answer: (D) $Q_1$ and $Q_2$ have the same sign, but magnitude of $Q_1$ is greater than the magnitude of $Q_2$
Two p-n junction diodes \(D_1\) and \(D_2\) are connected as shown in the figure. \(A\) and \(B\) are input signals and \(C\) is the output. The given circuit will function as a _______. 
In the circuit with ideal devices, the power MOSFET is operated with a duty cycle of 0.4 in a switching cycle with \( I = 10 \, {A} \) and \( V = 15 \, {V} \). The power delivered by the current source, in W, is: \[ {(round off to the nearest integer).} \] 
The op-amps in the following circuit are ideal. The voltage gain of the circuit is __________ (round off to the nearest integer). 
The switch (S) closes at \( t = 0 \) sec. The time, in sec, the capacitor takes to charge to 50 V is ___________ (round off to one decimal place).