Let the known positive charge at point $P$ be $+q$.
We are told that:
For the forces to cancel each other:
Let’s assume both $Q_1$ and $Q_2$ are positive: Then both repel $+q$, and the forces are in opposite directions. For net force to be zero, the magnitudes must be equal. Since $P$ is closer to $Q_2$, the force due to $Q_2$ would naturally be stronger unless its charge is smaller. So, to balance, $Q_2$ must have smaller magnitude than $Q_1$. Therefore, the charges are of the same sign, and since $P$ is closer to $Q_2$, for forces to cancel, we must have:
$|Q_1| > |Q_2|$
Answer: (D) $Q_1$ and $Q_2$ have the same sign, but magnitude of $Q_1$ is greater than the magnitude of $Q_2$
Explain the principle of Wheatstone's bridge by Kirchhoff's law. In the given circuit, there is no deflection in the galvanometer \( G \). What is the current flowing through the cell?
Three ac circuits are shown in the figures with equal currents. Explain with reason, if the frequency of the voltage \( E \) is increased then what will be the effect on the currents in them.
What is the first law of Kirchhoff of the electrical circuit? Find out the potential difference between the ends of 2 \(\Omega\) resistor with the help of Kirchhoff's law. See the figure:
State Kirchhoff's law related to electrical circuits. In the given metre bridge, balance point is obtained at D. On connecting a resistance of 12 ohm parallel to S, balance point shifts to D'. Find the values of resistances R and S.
With the help of the given circuit, find out the total resistance of the circuit and the current flowing through the cell.