Step 1: Represent the problem using trigonometry.
Let the length of the string be \( L \). The height of the kite (60 m) is the opposite side, and the string forms the hypotenuse of a right triangle. Using the sine function:
\[ \sin 60^\circ = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{60}{L}. \]
Step 2: Substitute the value of \( \sin 60^\circ \).
The value of \( \sin 60^\circ \) is \( \frac{\sqrt{3}}{2} \). Substituting this into the equation:
\[ \frac{\sqrt{3}}{2} = \frac{60}{L}. \]
Step 3: Solve for \( L \).
Rearrange the equation to isolate \( L \):
\[ L = \frac{60}{\frac{\sqrt{3}}{2}} = \frac{60 \cdot 2}{\sqrt{3}} = \frac{120}{\sqrt{3}}. \]
Rationalize the denominator:
\[ L = \frac{120}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{120\sqrt{3}}{3} = 40\sqrt{3}. \]
Final Answer: The length of the string is \( \mathbf{40\sqrt{3} \, \text{m}} \), which corresponds to option \( \mathbf{(1)} \).