Equation of the ellipse is $3x^2 + 4y^2 = 12$
$\Rightarrow \frac{x^{2}}{4}+\frac{y^{2}}{3} = 1 \quad.... \left(1\right)$
Eccentricity $e_{1} = \sqrt{1-\frac{3}{4}} = \frac{1}{2}$
So, the foci of ellipse are $\left(1, 0\right)$ and $\left(- 1, 0\right)$
Let the equation of the required hyperbola be
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1 \quad .... \left(2\right)$
Given $2a = 2\,sin \,\theta \Rightarrow a =\,sin \,\theta$
Since the ellipse $\left(1\right)$ and the hyperbola $\left(2\right)$ are confocal, so the foci of hyperbola are $\left(1, 0\right)$ and $\left(- 1, 0\right)$ too. If the eccentricity, of hyperbola be $e_{2}$ then
$ae_{2} = 1 \Rightarrow \,sin \,\theta \, e_{2} = 1 \Rightarrow e_{2} = cosec\, \theta$
$\therefore\quad b^{2} = a^{2} \left(e^{2}_{2} - 1\right) = sin^{2}\,\theta \left(cosec^{2} \,\theta - 1\right) = cos^{2} \,\theta $
$\therefore \quad$ Required equation of the hyperbola is
$\frac{x^{2}}{sin^{2}\,\theta } - \frac{y^{2}}{cos^{2} \,\theta } = 1 \Rightarrow x^{2}\, cosec^{2} \,\theta - y^{2}\, sec^{2} \,\theta = 1$