For a rectangular channel of width $b$ the specific force (momentum function) is
\[
M \;=\; \frac{Q^2}{gA} \;+\; \frac{A^2}{2T}
\;=\; \frac{Q^2}{g\,b\,y} \;+\; \frac{b\,y^2}{2},
\]
where $A=by$, $T=b$, $y=$ depth. Here $b=1$ m.
Let $y_1=0.2$ m (pre-jump) and $y_2=1.0$ m (post-jump). Equating $M_1=M_2$ gives
\[
\frac{Q^2}{g\,y_1}+\frac{y_1^2}{2}
\;=\;
\frac{Q^2}{g\,y_2}+\frac{y_2^2}{2}
\;\Rightarrow\;
\frac{Q^2}{g}
= \frac{y_1y_2(y_1+y_2)}{2}.
\]
Hence the common specific force (use either side) is
\[
M = \frac{Q^2}{g\,y_1}+\frac{y_1^2}{2}
= \frac{y_2(y_1+y_2)}{2}+\frac{y_1^2}{2}
= \frac{y_1^2+y_1y_2+y_2^2}{2}.
\]
Substituting $y_1=0.2$, $y_2=1.0$:
\[
M=\frac{0.2^2+0.2\times1.0+1.0^2}{2}
=\frac{0.04+0.20+1.00}{2}
=\frac{1.24}{2}
=0.62\ \text{m}^3.
\]
\[
\boxed{M \approx 0.62\ \text{m}^3}
\]