Step 1: Understanding the Question:
We are given the length of a circular arc and the angle it subtends at the center. From this, we can find the radius of the circle. We are also given the speed of a body moving along this circle. We need to find the time taken for this body to complete 4 full revolutions.
Step 2: Key Formula or Approach:
1. Convert all units to SI units (meters, radians, seconds).
2. Use the arc length formula: \(L = r\theta\), where \(L\) is arc length, \(r\) is radius, and \(\theta\) is the angle in radians.
3. Calculate the time period for one revolution: \(T = \frac{\text{Circumference}}{\text{Speed}} = \frac{2\pi r}{v}\).
4. Calculate the total time for 4 revolutions: \(t = 4T\).
Step 3: Detailed Explanation:
Unit Conversion:
Arc Length, \(L = 4.4 \text{ ly} = 4.4 \times 9.46 \times 10^{15} \text{ m} = 41.624 \times 10^{15} \text{ m}\).
Angle, \(\theta = 4s = 4 \text{ arcseconds}\). We convert this to radians.
\[ 1^\circ = 3600 \text{ arcseconds} \]
\[ \theta = 4'' \times \frac{1^\circ}{3600''} \times \frac{\pi \text{ rad}}{180^\circ} = \frac{4\pi}{3600 \times 180} \text{ rad} = \frac{\pi}{162000} \text{ rad} \]
\[ \theta \approx 1.939 \times 10^{-5} \text{ rad} \]
Speed, \(v = 8 \text{ AU/s} = 8 \times 1.5 \times 10^{11} \text{ m/s} = 12 \times 10^{11} \text{ m/s}\).
Calculate Radius (\(r\)):
\[ r = \frac{L}{\theta} = \frac{41.624 \times 10^{15}}{1.939 \times 10^{-5}} \approx 2.146 \times 10^{21} \text{ m} \]
Calculate Time for One Revolution (\(T\)):
\[ T = \frac{2\pi r}{v} = \frac{2 \times \pi \times (2.146 \times 10^{21})}{12 \times 10^{11}} \]
\[ T \approx \frac{13.48 \times 10^{21}}{12 \times 10^{11}} \approx 1.123 \times 10^{10} \text{ s} \]
Calculate Time for 4 Revolutions (\(t\)):
\[ t = 4 \times T = 4 \times 1.123 \times 10^{10} \approx 4.492 \times 10^{10} \text{ s} \]
Step 4: Final Answer:
The total time taken for 4 revolutions is approximately \(4.5 \times 10^{10}\) seconds. This matches option (A).