A horizontal straight wire 10 m long extending from east to west is falling with a speed of 5.0 m s-1, at right angles to the horizontal component of the earth’s magnetic field, 0.30 \(\times\)10-4 Wb m-2 .
Length of the wire, I = 10 m
Falling speed of the wire, v = 5.0 m/s
Magnetic field strength, B = 0.3 x 10-4 Wb m-2
a. Emf induced in the wire, e = Blv
=0.3×10-4×5×10
=1.5×10-3 V
b. Using Fleming's right had rule, it can be inferred that the direction of the induced emf is from West to East.
c. The eastern end of the wire is at a higher potential.


A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?
There are two laws, given by Faraday which explain the phenomena of electromagnetic induction:
Whenever a conductor is placed in a varying magnetic field, an emf is induced. If the conductor circuit is closed, a current is induced, known as the induced current.
The Emf induced inside a coil is equal to the rate of change of associated magnetic flux.
This law can be mathematically written as:
∈\(-N {\triangle \phi \over \triangle t}\)
