Step 1: Recall Bond’s law.
\[
E = k \left( \frac{1}{\sqrt{D_p}} - \frac{1}{\sqrt{D_f}} \right)
\]
where,
\( D_f = \) feed size (mm),
\( D_p = \) product size (mm),
\( E = \) energy (or power, proportional).
Step 2: Given data.
- Feed size \( D_f = 3.36 \, \text{mm} \)
- Case 1 product size \( D_{p1} = 0.354 \, \text{mm} \), Power = 4.5 kW
- Case 2 product size \( D_{p2} = 0.25 \, \text{mm} \), Power = ?
Step 3: Compute energy terms.
For Case 1:
\[
E_1 \propto \left( \frac{1}{\sqrt{0.354}} - \frac{1}{\sqrt{3.36}} \right)
\]
\[
\frac{1}{\sqrt{0.354}} = 1.681, \frac{1}{\sqrt{3.36}} = 0.545
\]
\[
E_1 = 1.681 - 0.545 = 1.136
\]
For Case 2:
\[
E_2 \propto \left( \frac{1}{\sqrt{0.25}} - \frac{1}{\sqrt{3.36}} \right)
\]
\[
\frac{1}{\sqrt{0.25}} = 2.000, \frac{1}{\sqrt{3.36}} = 0.545
\]
\[
E_2 = 2.000 - 0.545 = 1.455
\]
Step 4: Ratio of powers.
\[
\frac{P_2}{P_1} = \frac{E_2}{E_1} = \frac{1.455}{1.136} = 1.281
\]
Step 5: Compute final power.
\[
P_2 = 4.5 \times 1.281 = 5.77 \, \text{kW}
\]
Final Answer:
\[
\boxed{5.77 \, \text{kW}}
\]