A solid sphere of radius \(4a\) units is placed with its centre at origin. Two charges \(-2q\) at \((-5a, 0)\) and \(5q\) at \((3a, 0)\) is placed. If the flux through the sphere is \(\frac{xq}{\in_0}\) , find \(x\)
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
It is the property of subatomic particles that experiences a force when put in an electric and magnetic field. It is are of two types: Positive and Negative. It commonly carried by charge carriers protons and electrons.
Various properties of charge include the following :-
Two kinds of electric charges are there :-
When there is an identical number of positive and negative charges, the negative and positive charges would cancel out each other and the object would become neutral.