Let's calculate the current for the full-scale deflection:
\( I_1 = \frac{V}{R_{\text{gal}} + R_{\text{series}}} \)
\( I_1 = \frac{3V}{50\Omega + 2950\Omega} \)
\( I_1 = \frac{3V}{3000\Omega} \)
\( I_1 = 0.001 \, \text{A} \)
Now, let's calculate the current required for a 20-division deflection:
\( I_2 = \frac{2}{3} \cdot I_1 \)
\( I_2 = \frac{2}{3} \times 0.001 \, \text{A} \)
\( I_2 = 0.000667 \, \text{A} \)
To find the resistance needed, we can use Ohm's law:
\( V = I \cdot R \)
For the 20-division deflection:
\( 0.000667 \, \text{A} \times (50 \, \Omega + R) = 3 \, \text{V} \)
Solving this equation for \( R \), we get:
\( 0.000667 \, \text{A} \times R = 3 \, \text{V} - 0.000667 \, \text{A} \times 50 \, \Omega \)
\( R = \frac{3 \, \text{V} - 0.000667 \, \text{A} \times 50 \, \Omega}{0.000667 \, \text{A}} \)
Calculating this expression gives:
\( R \approx 4,449.25 \, \Omega \)
Rounding this value, we get: 4,450 Ω.
The Wheatstone bridge is balanced when \(R_3 = 144 \, \Omega\). If \(R_2\) and \(R_1\) are interchanged, the bridge balances for \(R_3 = 169 \, \Omega\). The value of \(R_4\) is: