A function, \( \lambda \), is defined by \[ \lambda ( p,q ) = \begin{cases} (p - q)^2, & \text{if } p \geq q, \\ p + q, & \text{if } p < q. \end{cases} \] The value of the expression \( \dfrac{\lambda ( -(-3 + 2), (-2 + 3) )}{( -(-2 + 1) )} \) is:
0
Given two operators \( \oplus \) and \( \odot \) on numbers \( p \text{ and } q \) such that \[ p \oplus q = \frac{p^2 + q^2}{pq} \text{and} p \odot q = \frac{p^2}{q}, \] if \( x \oplus y = 2 \odot 2 \), then \( x = \)


