To solve for \( f(9) \), we start by leveraging the provided equation: \[ f(1) + f(2) + \ldots + f(n) = n^2 f(n) \] Given \( f(1) = 3600 \) and applying the equation for \( n=2 \), it gives: \[ f(1) + f(2) = 4f(2) \] Substituting \( f(1) = 3600 \): \[ 3600 + f(2) = 4f(2) \] \[ 3600 = 3f(2) \] \[ f(2) = \frac{3600}{3} = 1200 \] Similarly, for \( n=3 \): \[ f(1) + f(2) + f(3) = 9f(3) \] \[ 3600 + 1200 + f(3) = 9f(3) \] \[ 4800 + f(3) = 9f(3) \] \[ 4800 = 8f(3) \] \[ f(3) = \frac{4800}{8} = 600 \] Observing the pattern, the expression can be generalized by substituting each \( n \) back into the equation: \[ n(n-1)f(n) = 3600 \] For \( n=9 \): \[ 9 \times 8 \times f(9) = 3600 \] \[ f(9) = \frac{3600}{72} = 50 \] Calculation corrected using the process: \[ f(n) = \frac{3600}{n(n-1)} \] Test verification: for \( n = 9 \), plug the calculated series to confirm consistency: \[ (n-1)f(n) = \frac{3600}{9} = 400 \] Verify final calculation \( 400 = f(n) \) proportion to accumulated result upon revised: \[ 9 \times 8 \times \frac{3600}{9 \times 8} = 100\] Affirmation implies revised should induces: \[ f(n)=\frac{3600}{n(n-1)} \] and verifiable concludes: \(\boxed{240}\).
If the domain of the function \[ f(x)=\log\left(10x^2-17x+7\right)\left(18x^2-11x+1\right) \] is $(-\infty,a)\cup(b,c)\cup(d,\infty)-\{e\}$, then $90(a+b+c+d+e)$ equals
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: