Step 1: Use the condition for first minima in single slit diffraction.
For Fraunhofer diffraction, the position of first minima is given by
\[
a \sin\theta = \lambda
\]
For small angles, \( \sin\theta \approx \tan\theta = \frac{y}{D} \).
Step 2: Substitute given values.
\[
\lambda = \frac{a y}{D}
\]
\[
a = 0.3\,\text{mm} = 3\times10^{-4}\,\text{m}, \quad
y = 5.5\,\text{mm} = 5.5\times10^{-3}\,\text{m}, \quad
D = 3\,\text{m}
\]
\[
\lambda = \frac{3\times10^{-4}\times5.5\times10^{-3}}{3}
= 5.5\times10^{-7}\,\text{m}
\]
Step 3: Convert into angstrom.
\[
\lambda = 5500\,\text{\AA}
\]