Question:

A force $F=5 \hat{i}+2\hat{j}-5 \hat{k}$ acts on a particle whose position vector is $r=\hat{i}-2 \hat{j}+\hat{k}$ What is the torque about the origin?

Updated On: Dec 19, 2024
  • $8 \hat{i}+10 \hat{j}+12 \hat{k}$
  • $8 \hat{i}+10 \hat{j}-12 \hat{k}$
  • $8 \hat{i}-10 \hat{j}-8 \hat{k}$
  • $10 \hat{ i }-10 \hat{ j }-\hat{ k }$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given,
$F =5 \hat{ i }+2 \hat{ j }-5 \hat{ k }$
and $r =\hat{ i }-2 \hat{ j }+\hat{ k }$

We know that $\tau= r \times F$
So, torque about the origin will be given by,
$=\begin{vmatrix} \hat{ i } & \hat{ j } & \hat{ k } \\ 1 & -2 & 1 \\ 5 & +2 & -5 \end{vmatrix}$
$=\hat{ i }(10-2)-\hat{ j }(-5-5)+\hat{ k }(2+10)$
$=8 \hat{ i }+10 \hat{ j }+12 \hat { k }$
Was this answer helpful?
1
0

Top Questions on System of Particles & Rotational Motion

View More Questions

Concepts Used:

System of Particles and Rotational Motion

  1. The system of particles refers to the extended body which is considered a rigid body most of the time for simple or easy understanding. A rigid body is a body with a perfectly definite and unchangeable shape.
  2. The distance between the pair of particles in such a body does not replace or alter. Rotational motion can be described as the motion of a rigid body originates in such a manner that all of its particles move in a circle about an axis with a common angular velocity.
  3. The few common examples of rotational motion are the motion of the blade of a windmill and periodic motion.