Given digits: \( \{1, 3, 5, 7, 9\} \) — all odd, and each used once.
Total 5-digit numbers = \( 5! = 120 \)
Each digit appears equally in each position (units, tens, hundreds, etc.).
So, each digit appears in each position \( \frac{5!}{5} = 24 \) times.
Sum contributed by each digit:
For digit \( d \), its total contribution is:
\[
24 \times d \times (10^0 + 10^1 + 10^2 + 10^3 + 10^4) = 24 \times d \times 11111
\]
Sum of digits: \( 1 + 3 + 5 + 7 + 9 = 25 \)
Total sum:
\[
\text{Sum} = 24 \times 11111 \times 25 = (24 \times 25) \times 11111 = 600 \times 11111 = \boxed{6666600}
\]