For a first-order reaction, the integrated rate law is:
\[
k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}
\]
where:
- \( k = 1.25 \times 10^{-3} \, s^{-1} \)
- \( [R]_0 = 5 \) g
- \( [R] = 2.5 \) g
Substituting the values:
\[
1.25 \times 10^{-3} = \frac{2.303}{t} \log \left( \frac{5}{2.5} \right)
\]
Since \( \log 2 = 0.301 \), we get:
\[
1.25 \times 10^{-3} = \frac{2.303}{t} \times 0.301
\]
Solving for \( t \):
\[
t = \frac{2.303 \times 0.301}{1.25 \times 10^{-3}}
\]
\[
t = \frac{0.693}{1.25 \times 10^{-3}}
\]
\[
t = 554.5 \, s \text{ or } 5.54 \times 10^2 \, s
\]