Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.
Bayes’ Theorem is a part of the conditional probability that helps in finding the probability of an event, based on previous knowledge of conditions that might be related to that event.
Mathematically, Bayes’ Theorem is stated as:-
\(P(A|B)=\frac{P(B|A)P(A)}{P(B)}\)
where,
This formula confines well as long as there are only two events. However, Bayes’ Theorem is not confined to two events. Hence, for more events.