If probability of happening of an event is 57%, then probability of non-happening of the event is

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?
In accordance with the multiplication rule of probability, the probability of happening of both the events A and B is equal to the product of the probability of B occurring and the conditional probability that event A happens given that event B occurs.
Let's assume, If A and B are dependent events, then the probability of both events occurring at the same time is given by:
\(P(A\cap B) = P(B).P(A|B)\)
Let's assume, If A and B are two independent events in an experiment, then the probability of both events occurring at the same time is given by:
\(P(A \cap B) = P(A).P(B)\)
Read More: Multiplication Theorem on Probability