Step 1: Total outcomes.
When a fair die is rolled twice, each roll has 6 outcomes. Thus total outcomes: \[ 6 \times 6 = 36 \]
Step 2: Favorable outcomes (second $>$ first).
We count ordered pairs \((a,b)\) with \(b>a\) where \(a\) = first roll, \(b\) = second roll. - If \(a=1\): \(b=2,3,4,5,6 \;\Rightarrow 5\) possibilities. - If \(a=2\): \(b=3,4,5,6 \;\Rightarrow 4\) possibilities. - If \(a=3\): \(b=4,5,6 \;\Rightarrow 3\) possibilities. - If \(a=4\): \(b=5,6 \;\Rightarrow 2\) possibilities. - If \(a=5\): \(b=6 \;\Rightarrow 1\) possibility. - If \(a=6\): \(b>a\) is impossible \(\;\Rightarrow 0\). Total favorable outcomes: \[ 5+4+3+2+1=15 \]
Step 3: Probability.
\[ P=\frac{\text{favorable outcomes}}{\text{total outcomes}} =\frac{15}{36} \]
Final Answer:
\[ \boxed{\text{(C) } \tfrac{15}{36}} \]
A | B | C | D | Average |
---|---|---|---|---|
3 | 4 | 4 | ? | 4 |
3 | ? | 5 | ? | 4 |
? | 3 | 3 | ? | 4 |
? | ? | ? | ? | 4.25 |
4 | 4 | 4 | 4.25 |