We know from the first law of thermodynamics:
\[ \Delta Q = \Delta U + \Delta W \] Where:
- \( \Delta Q \) is the heat supplied to the gas,
- \( \Delta U \) is the change in internal energy,
- \( \Delta W \) is the work done by the gas.
The work done is: \[ \Delta W = \frac{Q}{4} \] The change in internal energy for a diatomic gas is: \[ \Delta U = \frac{5}{2} n R \Delta T \] The heat supplied is: \[ \Delta Q = n C \Delta T \] Combining these expressions, we get: \[ n C \Delta T = \frac{5}{2} n R \Delta T + \frac{Q}{4} \] Simplifying: \[ n C = \frac{5}{2} n R + \frac{Q}{4 \Delta T} \] Solving for the molar heat capacity: \[ C = \frac{10}{3} R \] Thus, the molar heat capacity is: \[ C = \frac{10}{3} R \]
Match List-I with List-II:
List-I (Modulation Schemes) | List-II (Wave Expressions) |
---|---|
(A) Amplitude Modulation | (I) \( x(t) = A\cos(\omega_c t + k m(t)) \) |
(B) Phase Modulation | (II) \( x(t) = A\cos(\omega_c t + k \int m(t)dt) \) |
(C) Frequency Modulation | (III) \( x(t) = A + m(t)\cos(\omega_c t) \) |
(D) DSB-SC Modulation | (IV) \( x(t) = m(t)\cos(\omega_c t) \) |
Choose the correct answer: