Let:
- Initial speed = \( N \), new speed = \( N/2 \)
- Torque \( T \propto N^3 \Rightarrow T_2 = \left(\frac{N}{2}\right)^3 = \frac{1}{8} T_1 \)
For a DC series motor with negligible internal resistance and assuming a linear magnetic circuit:
- Torque \( T \propto \phi I \propto I^2 \Rightarrow T \propto I^2 \)
- So \( \frac{T_2}{T_1} = \left( \frac{I_2}{I_1} \right)^2 = \frac{1}{8} \Rightarrow I_2 = \frac{I_1}{\sqrt{8}} = \frac{40}{\sqrt{8}} = 14.14 \, {A} \)
Now, for a DC motor:
- \( V = E + I_a R \), and for negligible resistance, initially:
\[ E_1 = V = 400 \, {V} \]
Back EMF is proportional to speed and flux:
\[ E \propto N \phi \Rightarrow E_2 = \frac{1}{2} \cdot \frac{14.14}{40} \cdot E_1 = \frac{1}{2} \cdot \frac{14.14}{40} \cdot 400 = 70.7 \, {V} \]
Now apply KVL with external resistance \( R \):
\[ V = E_2 + I_2 R \Rightarrow 400 = 70.7 + 14.14 R \]
In the Wheatstone bridge shown below, the sensitivity of the bridge in terms of change in balancing voltage \( E \) for unit change in the resistance \( R \), in V/Ω, is __________ (round off to two decimal places).
An ideal low pass filter has frequency response given by \[ H(j\omega) = \begin{cases} 1, & |\omega| \leq 200\pi \\ 0, & \text{otherwise} \end{cases} \] Let \( h(t) \) be its time domain representation. Then h(0) = _________ (round off to the nearest integer).
The relationship between two variables \( x \) and \( y \) is given by \( x + py + q = 0 \) and is shown in the figure. Find the values of \( p \) and \( q \). Note: The figure shown is representative.
In the given figure, EF and HJ are coded as 30 and 80, respectively. Which one among the given options is most appropriate for the entries marked (i) and (ii)?