Let:
- Initial speed = \( N \), new speed = \( N/2 \)
- Torque \( T \propto N^3 \Rightarrow T_2 = \left(\frac{N}{2}\right)^3 = \frac{1}{8} T_1 \)
For a DC series motor with negligible internal resistance and assuming a linear magnetic circuit:
- Torque \( T \propto \phi I \propto I^2 \Rightarrow T \propto I^2 \)
- So \( \frac{T_2}{T_1} = \left( \frac{I_2}{I_1} \right)^2 = \frac{1}{8} \Rightarrow I_2 = \frac{I_1}{\sqrt{8}} = \frac{40}{\sqrt{8}} = 14.14 \, {A} \)
Now, for a DC motor:
- \( V = E + I_a R \), and for negligible resistance, initially:
\[ E_1 = V = 400 \, {V} \]
Back EMF is proportional to speed and flux:
\[ E \propto N \phi \Rightarrow E_2 = \frac{1}{2} \cdot \frac{14.14}{40} \cdot E_1 = \frac{1}{2} \cdot \frac{14.14}{40} \cdot 400 = 70.7 \, {V} \]
Now apply KVL with external resistance \( R \):
\[ V = E_2 + I_2 R \Rightarrow 400 = 70.7 + 14.14 R \]
An ideal low pass filter has frequency response given by \[ H(j\omega) = \begin{cases} 1, & |\omega| \leq 200\pi \\ 0, & \text{otherwise} \end{cases} \] Let \( h(t) \) be its time domain representation. Then h(0) = _________ (round off to the nearest integer).
Using shunt capacitors, the power factor of a 3-phase, 4 kV induction motor (drawing 390 kVA at 0.77 pf lag) is to be corrected to 0.85 pf lag. The line current of the capacitor bank, in A, is __________ (round off to one decimal place).
In the Wheatstone bridge shown below, the sensitivity of the bridge in terms of change in balancing voltage \( E \) for unit change in the resistance \( R \), in V/Ω, is __________ (round off to two decimal places).
An air filled cylindrical capacitor (capacitance \( C_0 \)) of length \( L \), with \( a \) and \( b \) as its inner and outer radii, respectively, consists of two coaxial conducting surfaces. Its cross-sectional view is shown in Fig. (i). In order to increase the capacitance, a dielectric material of relative permittivity \( \varepsilon_r \) is inserted inside 50% of the annular region as shown in Fig. (ii). The value of \( \varepsilon_r \) for which the capacitance of the capacitor in Fig. (ii), becomes \( 5C_0 \) is
An ideal sinusoidal voltage source \( v(t) = 230\sqrt{2} \sin(2\pi \times 50t) \, \text{V} \) feeds an ideal inductor \( L \) through an ideal SCR with firing angle \( \alpha = 0^\circ \). If \( L = 100 \, \text{mH} \), then the peak of the inductor current, in ampere, is closest to:
The relationship between two variables \( x \) and \( y \) is given by \( x + py + q = 0 \) and is shown in the figure. Find the values of \( p \) and \( q \). Note: The figure shown is representative.
In the given figure, EF and HJ are coded as 30 and 80, respectively. Which one among the given options is most appropriate for the entries marked (i) and (ii)?