Let:
- Initial speed = \( N \), new speed = \( N/2 \)
- Torque \( T \propto N^3 \Rightarrow T_2 = \left(\frac{N}{2}\right)^3 = \frac{1}{8} T_1 \)
For a DC series motor with negligible internal resistance and assuming a linear magnetic circuit:
- Torque \( T \propto \phi I \propto I^2 \Rightarrow T \propto I^2 \)
- So \( \frac{T_2}{T_1} = \left( \frac{I_2}{I_1} \right)^2 = \frac{1}{8} \Rightarrow I_2 = \frac{I_1}{\sqrt{8}} = \frac{40}{\sqrt{8}} = 14.14 \, {A} \)
Now, for a DC motor:
- \( V = E + I_a R \), and for negligible resistance, initially:
\[ E_1 = V = 400 \, {V} \]
Back EMF is proportional to speed and flux:
\[ E \propto N \phi \Rightarrow E_2 = \frac{1}{2} \cdot \frac{14.14}{40} \cdot E_1 = \frac{1}{2} \cdot \frac{14.14}{40} \cdot 400 = 70.7 \, {V} \]
Now apply KVL with external resistance \( R \):
\[ V = E_2 + I_2 R \Rightarrow 400 = 70.7 + 14.14 R \]

The maximum percentage error in the equivalent resistance of two parallel connected resistors of 100 \( \Omega \) and 900 \( \Omega \), with each having a maximum 5% error, is: \[ {(round off to nearest integer value).} \]
The induced emf in a 3.3 kV, 4-pole, 3-phase star-connected synchronous motor is considered to be equal and in phase with the terminal voltage under no-load condition. On application of a mechanical load, the induced emf phasor is deflected by an angle of \( 2^\circ \) mechanical with respect to the terminal voltage phasor. If the synchronous reactance is \( 2 \, \Omega \), and stator resistance is negligible, then the motor armature current magnitude, in amperes, during loaded condition is closest to: \[ {(round off to two decimal places).} \]
In the Wheatstone bridge shown below, the sensitivity of the bridge in terms of change in balancing voltage \( E \) for unit change in the resistance \( R \), in mV/\(\Omega\), is _____________ (round off to two decimal places).
An ideal low pass filter has frequency response given by
\[ H(j\omega) = \begin{cases} 1, & |\omega| \leq 200\pi \\ 0, & \text{otherwise} \end{cases} \] Let \( h(t) \) be its time domain representation. Then \( h(0) = \underline{\hspace{2cm}} \) (round off to the nearest integer).
Using shunt capacitors, the power factor of a 3-phase, 4 kV induction motor (drawing 390 kVA at 0.77 pf lag) is to be corrected to 0.85 pf lag. The line current of the capacitor bank, in A, is _____________ (round off to one decimal place).
A continuous time periodic signal \( x(t) \) is given by: \[ x(t) = 1 + 2\cos(2\pi t) + 2\cos(4\pi t) + 2\cos(6\pi t) \] If \( T \) is the period of \( x(t) \), then evaluate: \[ \frac{1}{T} \int_0^T |x(t)|^2 \, dt \quad {(round off to the nearest integer).} \]
Consider a distribution feeder, with \( R/X \) ratio of 5. At the receiving end, a 350 kVA load is connected. The maximum voltage drop will occur from the sending end to the receiving end, when the power factor of the load is: \[ {(round off to three decimal places).} \]
In the circuit with ideal devices, the power MOSFET is operated with a duty cycle of 0.4 in a switching cycle with \( I = 10 \, {A} \) and \( V = 15 \, {V} \). The power delivered by the current source, in W, is: \[ {(round off to the nearest integer).} \] 
Let \( (x, y) \in \mathbb{R}^2 \). The rate of change of the real-valued function
\[ V(x, y) = x^2 + x + y^2 + 1 \] at the origin in the direction of the point \( (1, 2) \) is _____________ (round off to the nearest integer).
Consider ordinary differential equations given by \[ \frac{dx_1(t)}{dt} = 2x_2(t), \quad \frac{dx_2(t)}{dt} = r(t) \] with initial conditions \( x_1(0) = 1 \) and \( x_2(0) = 0 \). If 