Step 1: Formula for magnetic dipole moment.
The magnetic dipole moment of a rod is given by:
\[
M = \text{magnetization} \times \text{volume} = M_0 \times (\pi r^2 L)
\]
where \( M_0 \) is the magnetization, \( r \) is the radius, and \( L \) is the length of the rod.
Step 2: Substituting the values.
Given,
- Length \( L = 5 \, \text{cm} \),
- Diameter \( 1 \, \text{cm} \) (so radius \( r = 0.5 \, \text{cm} \)),
- Magnetization \( M_0 = 5 \times 10^3 \, \text{A/m} \).
The magnetic dipole moment is:
\[
M = (5 \times 10^3) \times \left( \pi (0.5)^2 \times 5 \times 10^{-2} \right) = 2 \times 10^{-2} \, \frac{\text{J}}{\text{T}}
\]
Step 3: Conclusion.
The correct answer is (C), \( 2 \times 10^{-2} \, \frac{\text{J}}{\text{T}} \).