Step 1: Drift Velocity and Current Relation
The formula for current is:
\[
I = n A e v_d
\]
where:
\( I = 10 \, \text{A} \) (current),
\( A = 5 \times 10^{-6} \, \text{m}^2 \) (cross
sectional area),
\( e = 1.6 \times 10^{-19} \, \text{C} \) (charge of an electron),
\( v_d = 2 \times 10^{-3} \, \text{m/s} \) (drift velocity),
\( n \) is the number of free electrons per unit volume.
Step 2: Solving for \( n \)
Rearranging the equation for \( n \):
\[
n = \frac{I}{A e v_d}
\]
Substituting the given values:
\[
n = \frac{10}{(5 \times 10^{-6}) \cdot (1.6 \times 10^{-19}) \cdot (2 \times 10^{-3})}
\]
Step 3: Simplifying
Evaluating the denominator:
\[
(5 \times 10^{-6}) \cdot (1.6 \times 10^{-19}) = 8 \times 10^{-25}
\]
\[
(8 \times 10^{-25}) \cdot (2 \times 10^{-3}) = 16 \times 10^{-28}
\]
\[
n = \frac{10}{16 \times 10^{-28}}
\]
\[
n = \frac{10}{16} \times 10^{28} = 0.625 \times 10^{28} = 625 \times 10^{25}
\]
Final Answer: The number of free electrons in each cubic meter of the wire is \( 625 \times 10^{25} \).