\(B = V \frac{dP}{dV}\)
Finding the magnitude of the change in the volume:-
70 x 109 =\(V \frac{dV}{dx} \times 10^3 \times 10 \times 5 \times 10^3\)
7 x 109 = V/dV x 106 x 5
\(7000 = \frac{V}{dV} \times 5\)
\(\frac{dV}{V} = \frac{5}{7000}\)
V = l3
\(\frac{dV}{V} = 3 \frac{dI}{I}\)
\(dI = \frac{5}{21000}\)
dl = 0.238 mm = 0.24mm
A positive, singly ionized atom of mass number $ A_M $ is accelerated from rest by the voltage $ 192 \, \text{V} $. Thereafter, it enters a rectangular region of width $ w $ with magnetic field $ \vec{B}_0 = 0.1\hat{k} \, \text{T} $. The ion finally hits a detector at the distance $ x $ below its starting trajectory. Which of the following option(s) is(are) correct?
$ \text{(Given: Mass of neutron/proton = } \frac{5}{3} \times 10^{-27} \, \text{kg, charge of the electron = } 1.6 \times 10^{-19} \, \text{C).} $