Here, $R = 20\, cm = 0.2\, m, M = 20 \,kg$
As $\tau = FR = (25 \,N) (0.2 \,m) = 5\, N m$
Moment of inertia of flywheel about its axis is
$I = \frac{MR^2}{2} $
$= \frac{(20\,kg)(0.2\,m)^2}{2} $
$= 0.4\,kg\,m^2$
As $\tau = I\alpha$
$\therefore$ Angular acceleration of the wheel,
$ \alpha = \frac{\tau}{I} = \frac{5\,N\,m}{0.4\,kg\,m^2} = 12.5\,rad \,s^{-2}$
Angular displacement of wheel,
$\theta = \frac{\text{Length of unwound string}}{\text{Radius of the wheel}} $
$ = \frac{2\,m}{0.2\,m} = 10 \,rad$
Let $\omega$ be final angular velocity.
As $\omega^2 = \omega_0^2 + 2\alpha \theta$
Since the wheel starts from rest, therefore $\omega_0 = 0$
$\therefore \omega^2 = 2\times (12.5\,rad \,s^{-2}) ( 10\,rad) = 250\,rad^2 \,s^{-2}$
$\therefore $ Kinetic energy gained, $K = \frac{I}{2}I\omega^2$
$ K= \frac{1}{2}\times 0.4\,kg\,m^2 \times 250 \,rad^2 s^{-2} = 50\,J$