The drift velocity ($v_d$) of electrons in a conductor is given by:
$v_d = \frac{I}{neA}$
where:
$v_d = \frac{1\,\text{A}}{(8 \times 10^{28}\,\text{m}^{-3})(1.6 \times 10^{-19}\,\text{C})(5 \times 10^{-7}\,\text{m}^2)} \approx 1.56 \times 10^{-4}\,\text{m/s}$
The time taken ($t$) to drift across the length ($l$) of the wire is:
$t = \frac{l}{v_d} = \frac{1\,\text{m}}{1.56 \times 10^{-4}\,\text{m/s}} \approx 6.4 \times 10^3\,\text{s}$
The correct answer is (D) $6.4 \times 10^3\,\text{s}$.