Mass of the copper block, m = 2.5 kg = 2500 g
Rise in the temperature of the copper block, Δθ = 500°C
Specific heat of copper, C = 0.39 J g–1 °C–1
Heat of fusion of water, L = 335 J g–1
The maximum heat the copper block can lose, Q = mCΔθ
= 2500 × 0.39 × 500
= 487500 J
Let m1 g be the amount of ice that melts when the copper block is placed on the ice block.
The heat gained by the melted ice, Q = m1L
∴ m1 = \(\frac{Q}{L}\) = \(\frac{487500}{335}\) = 1455.22 g
Hence, the maximum amount of ice that can melt is 1.45 kg.

Find the mean deviation about the mean for the data 38, 70, 48, 40, 42, 55, 63, 46, 54, 44.
Specific heat of a solid or liquid is the amount of heat that raises the temperature of a unit mass of the solid through 1°C.
The Molar specific heat of a solid or liquid of a material is the heat that you provide to raise the temperature of one mole of solid or liquid through 1K or 1°C.
The volume of solid remains constant when heated through a small range of temperature. This is known as specific heat at a constant volume. It is denoted as CV.
The pressure of solid remains constant when heated through a small range of temperature. This is known as specific heat at constant pressure which can be denoted as CP.